Homework 2 Review

CS 598 DH

Setting

Semi-honest Security

Malicious Security

Zero Knowledge

General-Purpose Tools

GMW Protocol

Multi-party

Multi-round

Garbled Circuit

Constant Round

Two Party

Primitives

Oblivious Transfer

Pseudorandom functions/encryption

Commitments

ORAM

Setting

Semi-honest Security

Malicious Security

Zero Knowledge

Primitives

Oblivious Transfer

Pseudorandom functions/encryption

Commitments

ORAM

General-Purpose Tools

GMW Protocol

Multi-party

Multi-round

Garbled Circuit

Constant Round

Two Party

$$f(\cdot) = \{ r \mid r \stackrel{\$}{\leftarrow} \{0,1\} \}$$

$$b_0 \stackrel{\$}{\leftarrow} \{0,1\}$$

$$r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

$$c = \operatorname{Com}(b_0; r)$$

$$b_1 \stackrel{\$}{\leftarrow} \{0,1\}$$

$$f(\cdot) = \{ r \mid r \stackrel{\$}{\leftarrow} \{0,1\} \}$$

$$b_0 \stackrel{\$}{\leftarrow} \{0,1\}$$

$$r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

$$b_1 \stackrel{\$}{\leftarrow} \{0,1\}$$

$$f(\cdot) = \{ r \mid r \stackrel{\$}{\leftarrow} \{0,1\} \}$$

$$b_0 \stackrel{\$}{\leftarrow} \{0,1\}$$

$$r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

$$b_1 \stackrel{\$}{\leftarrow} \{0,1\}$$

$$c \stackrel{?}{=} \operatorname{Com}(b_0; r)$$

$$f(\cdot) = \{ r \mid r \stackrel{\$}{\leftarrow} \{0,1\} \}$$

$$b_0 \stackrel{\$}{\leftarrow} \{0,1\}$$

$$r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

$$b_0 \oplus b_1$$

$$c \stackrel{?}{=} \operatorname{Com}(b_0; r)$$

abort

 $b_0 \oplus b_1$

$$f(\cdot) = \{ r \mid r \stackrel{\$}{\leftarrow} \{0,1\} \}$$

$$b_0 \stackrel{\$}{\leftarrow} \{0,1\}$$

$$r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

 $b_0 \oplus b_1$

 $c \stackrel{?}{=} \operatorname{Com}(b_0; r)$

 $(b_1 = 0 \text{ if Alice aborts})$

abort

 $b_0 \oplus b_1$

$$b_0 \stackrel{\$}{\leftarrow} \{0,1\}$$

$$r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

output

Suppose $b_0 \oplus b_1 = s$

$$b_0 \stackrel{\$}{\leftarrow} \{0,1\}$$

$$r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

$$r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

What if $b_0 \oplus b_1 \neq s$? Try again!!

$$b_0 \overset{\$}{\leftarrow} \{0,1\}$$

$$r \overset{\$}{\leftarrow} \{0,1\}^{\lambda}$$

$$b_0' \overset{\$}{\leftarrow} \{0,1\}$$
$$r' \overset{\$}{\leftarrow} \{0,1\}^{\lambda}$$

